TP1 Bilan de matière réalisé par mesure de volume gazeux

1) Objectifs:

Etudier une transformation chimique faisant intervenir des espèces solides, gazeuses et en solution aqueuse Faire un bilan des quantités de matière au début puis à la fin de la réaction.

2) Matériel disponible sur votre paillasse:

Tube à essais – allumette – balance

Magnésium – acide chlorhydrique

Ballon à fond plat muni d'un bouchon (graissé) à 2 trous

Burette graduée de 20 ml ou tube à robinet

Éprouvettes graduées - tube en verre à 2 coudes - cristallisoir

1 petit bécher de 100

1 pot yaourt

1 flacon de AgNO3

Papier pH

3) Etude qualitative

Les acides « attaquent » la majorité des métaux. Ainsi, l'acide chlorhydrique (H₃O⁺, Cl⁻) réagit avec le magnésium, ce métal est disponible au laboratoire sous la forme d'un ruban.

Identification des produits de la réaction

- ➤ Proposer un protocole permettant d'identifier simplement le gaz qui se dégage par réaction de l'acide chlorhydrique sur le magnésium.
- Enumérer des mesures de protections indispensables.
- ▶ Proposer un protocole pour rechercher les ions présents en solution.
- Réaliser l'expérience en respectant les consignes de prudence.

Equation chimique

- Faire le bilan des ions présents dans la solution avant puis après la réaction.
- Quels sont les ions spectateurs ?
- 🗷 Proposer une équation chimique de la réaction entre le magnésium et l'acide chlorhydrique.
- Proposer une équation chimique de la réaction d'identification des ions magnésium.

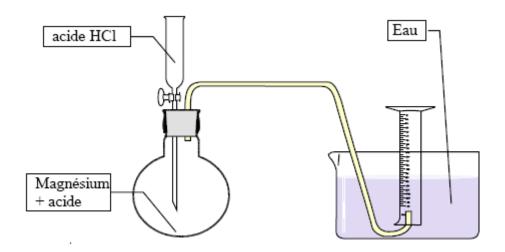
4) Etude quantitative

On se propose d'étudier quantitativement cette transformation chimique.

Quelle grandeur peut-on mesurer pour faire le bilan des substances présentes. Proposer un protocole.

Bilan initial

- ❖ Couper 10 cm de ruban de magnésium (le ruban de 25 m de long a une masse d'environ 25 g)
- Peser la masse du ruban


$$m_{Mg} = g$$

- \bullet En déduire la quantité de matière de magnésium $n_{Mg} = mol$
- \bullet Calculer le volume V_0 d'acide chlorhydrique (H_3O^+ , $C\Gamma$)l à 1 mol. L^{-1} qu'il faudrait verser pour que les les réactifs soient dans les proportions stoechiométriques

 \diamondsuit Dans le réacteur nous utiliserons un volume {2 V_0 , rangée de droite} ou { $V_0/2$, rangée de gauche} d'acide chlorhydrique.

Expérience

a) montage

6) manipulation

- Introduire le morceau de magnésium dans le ballon, bien le fermer avec le bouchon **préalablement** graissé
 - Réaliser le montage
 - Remplir l'entonnoir à robinet avec un volume 2V₀ ou V₀/2 d'acide chlorhydrique (H₃O⁺, Cl⁻) à 1 mol.L⁻¹
 - Mesurer, le volume V_d d'eau déplacé dans l'éprouvette

Bilan final

- ② Quels étaient les réactifs en excès et en défaut dans votre réacteur ?
- ② Pouvez vous en déduire un bilan complet final de matière dans le ballon ?

Confirmation expérimentale

© Rechercher et effectuez trois confirmations expérimentales de vos prédictions.